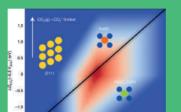
NanoGe Fall meeting


The SELECTCO2 consortium organised a symposium - #SolCat21. (Photo-)Electrocatalysis: From the Atomistic to System Scale during the online NanoGe Fall meeting on 18-20 October 2021. There were **12 invited speakers** and 29 in total. This event gave visibility to the project

results, allowed for knowledge transfer outside the Consortium, encouraged future collaboration and favored exploitation opportunities.

https://www.nanoge.org/NFM21/symposia?t=5e4bfebb397fc479c7cd56ee

Unified mechanistic understanding of CO₂ reduction to CO on transition metal and single atom catalysts, S. Vijay, W. Ju, S. Brückner, S.-C. Tsang, P. Strasser & K. Chan, Nature Catalysis, 4, 1024–1031 (2021)

https://doi.org/10.1038/s41929-021-00705-y

Publication

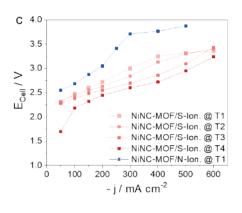
Website: www.selectco2.eu

Newsletter #2 FEBRUARY 2022

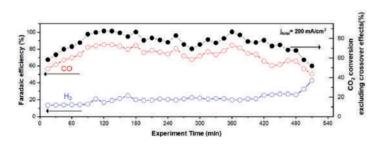
> SELECTIVE ELECTROCHEMICAL REDUCTION OF CO, TO HIGH VALUE CHEMICALS

SELECTCO2 moving towards its objectives !

2021 was a successful second year for the EU funded project SELECTCO2, with both new membranes and gas diffusion electrodes developed for CO₂ electrolysis. In parallel, the mechanisms of CO₂ electrolysis to CO on single site catalysts has been resolve resulting in a Nature Catalysis publication, as well as the branching point between ethylene and ethanol production on copper. **Environmental analysis** has shown that CO₂ electrolysis is an excellent way to negate CO, emissions.

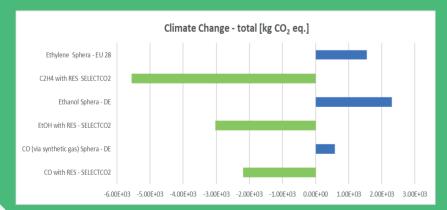

In the following year we expect to produce **more robust membranes** and effective gas diffusion electrodes. We expect these along with enhancements in **catalyst design** and **mass transfer optimizations** to allow us to achieve **highly efficient** (> 40% energy efficiency) **high** current density (>200 mA/cm2) selective (> 80%) conversion into either CO, ethylene or ethanol.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 851441.



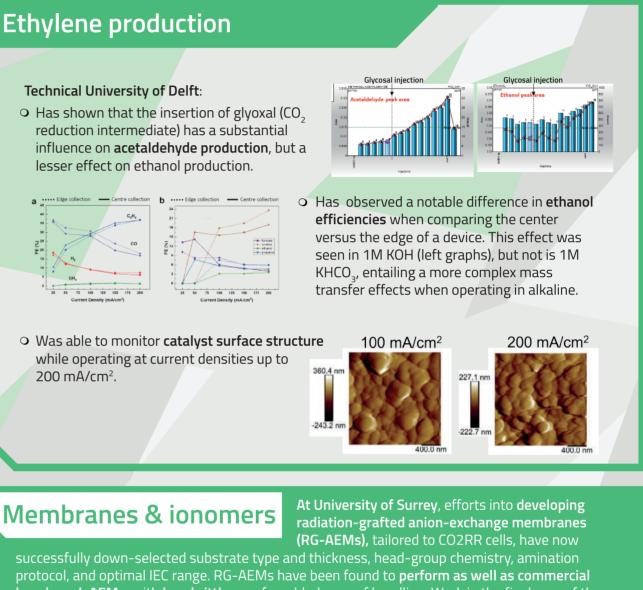
- **Highlights** • **De Nora** has been able to successfully integrate a variety of CO₂ to CO, ethanol, and ethylene producing catalysts into their gas diffusion electrodes. The approach taken is easily scalable providing a route to take newly developed catalysts and rapidly integrate them into a variety of different gas diffusion layers.
- **University of Surrey** has tuned their newly developed membrane to **reduce costs**, as well as improve water management and ionic conductivity issues.
- **Denmark Techinal University** has developed an electrochemical mass spectrometry approach that can **measure volatile CO**, **electrolysis products** such as acetaldehyde and ethanol.

CO, to CO selectivities & conversion rate



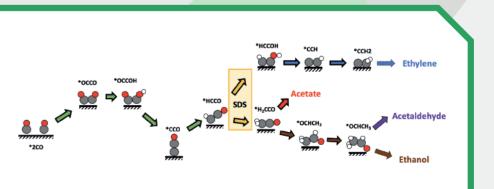
Technical University Berlin has been able to achieve high CO₂ to CO selectivities (85-98%) using single site catalysts and have been able to operate at impressively low cell voltages.

Denmark Techinal University was able to show ~80% conversion of CO₂ to CO for 8 hours (excluding CO₂ crossing over to the anode)


Reduction of $CO_{2 eq.}$ emissions

Compared to benchmark routes to obtain the targeted products, **RINA-C** has shown that the SELECTCO2 technologies have the potential to achieve significant savings in terms of CO_{2 m} emissions (even CO₂ negative emissions may be obtained at the point of production due to carbon capture and utilisation approach of SELECTCO2 solutions)

Ethylene production


• Has shown that the insertion of glyoxal (CO₂) reduction intermediate) has a substantial lesser effect on ethanol production.

protocol, and optimal IEC range. RG-AEMs have been found to perform as well as commercial benchmark AEMs, with less brittleness for added ease of handling. Work in the final year of the project will focus on elucidating the correct combination of additional functionalities to ensure optimal water and ion transport through the RG-AEMs.

Denmark Techinal University

has been able to computationally understand the CO₂ reduction mechanism and has found the most likely branching point between ethanol and ethylene.

MAIN ACHIEVEMENTS

CO, reduction mechanism